EYFS	
EYFS Early Learning Goals	Number ELG - Have a deep understanding of numbers to 10 , including the composition of each number. - Recall fluently number bonds up to 5 and some number bonds to 10 . - Recognise quantities without counting up to 5 . Numerical Patterns ELG Children at the expected level of development will: - Count reliably beyond 20 , recognising the pattern of the counting system. - Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. - Explore patterns within numbers to 10 , including doubling, halving and sharing.
Year 1	
Basic mathematical vocabulary take away, distance between, difference between, less than. How many more? How much greater? How many fewer? How much more is...? - subtract, take (away), minus, leave, how many are left/left over? how many have gone? one less, two less, ten less... how many fewer is... than...? how much less is...? difference between half, halve = equals, sign, is the same as	
start from, start with, start at look at point, to show me	
Solve one-step probl	National curriculum link: ms involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Objectives:

To be able to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
Using grouping and arrays children understand multiplication is commutative.

Happy, successful, curious communicators

Happy, successful, curious communicators

Year 2

Basic mathematical vocabulary:

lots of, groups of \times, times, multiply, multiplied by multiple of once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve share, share equally

Instructional vocabulary:

carry on, continue, repeat, what comes next? predict describe the pattern describe the rule find, find all, find different, investigate

National curriculum link:

Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs.

Objectives:

- Recall and use multiplication facts for 2,5 and 10 multiplication tables including recognising odd and even numbers.
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, including problems in contexts.
Concrete Pictorial \quad Abstract

Happy, successful, curious communicators

Grouping

5 frogs on each lily pad $5 \times 3=15$

Partition to multiply (use numicon, base 10, Cuisenaire rods)
i.e. 4×15

Pictorial representation of arrays $4 \times 5=20,5 \times 4=20$.

Commutativity

Partitioning strategy for doubling Double 35

Understand the link between repeated addition and multiplication
Know that 3×4 is that same as $4+4+4$

$5+5+5+5+5+5=30$
$5 \times 6=30$
5 multiplied by 6
6 groups of 5
6 hops of 5

Decision making

How many number sentences can you write to describe this array? Can you use addition, multiplication and division?

Explain your answers.

Happy, successful, curious communicators
lots of, groups of \times, times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as
(big, long, wide... and so on) repeated addition array row, column double, halve share, share equally one each, two each, three each...

Instructional vocabulary

carry on, continue, repeat what comes next? Predict, describe the pattern, describe the rule, find, find all, find different, investigate, choose, decide, collect

National curriculum link

Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers.

Objectives:

- Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables.
- Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Happy, successful, curious communicators

Move on to using Base 10/dienes to move towards a more compact method.

Representing problems

A group of aliens live on Planet Xert. Trinions have three legs, Quadions have four legs. The group has 22 legs altogether. How many Trinions and Quadions might there be? Is there more than one solution?

Happy, successful, curious communicators

Wrekin View

lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve, factor, multiple

Instructional vocabulary

carry on, continue, repeat what comes next? predict, describe the pattern, describe the rule
pattern, puzzle, calculate, calculation, mental calculation, method, jotting, answer right, correct, wrong, what could we try next? how did you work it out? number sentence, sign, operation, symbol, equation

National curriculum link:

Mutiply two-digit and three-digit numbers by a one-digit using formal written layout.

Objectives:

- Recall multiplication and division fact for multiplcation tables up to 12×12.
- Recognise and use factor pairs and commutaivity in mental calculations.
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiliyng together three numbers.
- Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Happy, successful, curious communicators

Place value materials to represent calculations

Fill each row to make 126.
Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

Add up each column, starting with the ones making any exchanges needed.

Calculation
4×126

Place $<,>$, or $=$ in these number sentences to make them correct. 50×4 4×50
$4 \times 50 \square 40 \times 5$
200×5 - 3×300

Year 5

Basic mathematical vocabulary

lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve share, share equally factor, multiple, prime,
composite
Instructional vocabulary
carry on, continue, repeat what comes next? predict, describe the pattern, describe the rule find, find all, find different, investigate

National curriculum link:

Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for twodigit numbers.

Objectives:

- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
- Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Multiply numbers mentally drawing upon known facts.
- Multiply whole numbers and those involving decimals by 10,100 and 1000 .

Concrete	Pictorial	Abstract
Place value materials to represent calculations if needed (see Year 4)	Grid method (if needed for conceptual understanding)	Short multiplication Use expanded method first if needed to build conceptual understanding

Happy, successful, curious communicators

Happy, successful, curious communicators

Representing problems:

40 cupcakes cost $£ 3.60$, How much do 80 cupcakes cost? How much do 120 cupcakes cost?

Year 6

Basic mathematical vocabulary

lots of, groups of times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on) repeated addition array row, column double, halve share, share equally factor, multiple, prime, composite

Instructional vocabulary

Happy, successful, curious communicators

Wrekin View
carry on, continue, repeat what comes next? predict, describe the pattern, describe the rule find, find all, find different, investigate

National curriculum link:

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

Objectives:

- Perform mental calculations, including with mixed operations and large numbers.
- Identify common factors, common multiples and prime numbers.
- Use their knowledge of the order of operations (BODMAS) to carry out calculations involving the four operations.

Using known facts

If $2 \times 3=6$ then $0.2 \times 3=0.6$ and $0.02 \times 3=0.06$
Then apply known facts to decimal multiplication 0.75×6
$0.7 \times 6=4.2$
$0.05 \times 6=0.3$
$4.2+0.3=4.5$
Make explicit links between decimals and money
$£ 2.56=256$ p
Work in pence and convert back at the end of the calculation
Use place value knowledge to remove the decimal for calculation
$24.3 \times 6=$
Make ten times bigger $=243 \times 6$
$243 \times 6=1458$
Make ten times smaller $=145.8$
Happy, successful, curious communicators

Wrekin View

Long multiplication:

Use expanded method first if needed to build conceptual understanding

Multiplying decimals

Children must understand that the number you are multiplying by needs to be placed under the ones section and the decimal place does not move.

Representing problems

Answer: 3224

Amy is given the calculation 5413×600. She says, "I can do this without a written method." Write down the mental steps you think Amy could do.

11 Ally chooses a whole numbe
When she multiplies her number by 4 , the answer is less than 100 When she multiplies her number by 5 , the answer is greater than 100 Write a number that Ally could have started with.

